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The genomic organization into active and inactive chromatin

domains imposes specific requirements for having domain

boundaries to prohibit interference between the opposing

activities of neighbouring domains. These boundaries provide

an insulator function by binding architectural proteins that

mediate long-range interactions. Among these, CTCF plays a

prominent role in establishing chromatin loops (between pairs

of CTCF binding sites) through recruiting cohesin. CTCF-

mediated long-range interactions are integral for a multitude

of topological features of interphase chromatin, such as the

formation of topologically associated domains, domain

insulation, enhancer blocking and even enhancer function.
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Introduction
The concept of inactive and active chromatin domains was

suggested quite early on as a way to interpret compact and

less dense chromatin packaging in diploid interphase nu-

clei or in polytene chromosomes. The existence of such

domains specifically requires the presence of domain

boundaries to insulate the opposite activities of neighbour-

ing domains. Such shielding elements, known as insulators,

have been functionally identified by a position-indepen-

dent high-level expression of a transgene in mice and flies

[1,2]. In contrast to this barrier effect of an insulator, another

shielding activity was called enhancer blocking [3], since

it interferes with the action of an enhancer on a specific

promoter when the insulator is positioned between the two.

Following the discovery of several Drosophila-specific

insulator binding proteins (IBPs), such as BEAF32 [4],

Su(Hw) [5,6] and Zw5 [7], the vertebrate factor CTCF

[8,9] was shown to mediate insulation [10]. Later, the high

conservation of chromatin insulation was demonstrated
www.sciencedirect.com 
by the identification of CTCF in Drosophila (dCTCF)

[11–13] and by comparing shared features (Table 1).

Here, we summarize recent results on the genome-wide

binding of these and more recently discovered insulator

factors, and the projection of these binding sites onto the

three-dimensional chromatin structure. These observa-

tions and results from high throughput analyses and

functional tests are discussed with respect to a unifying

mechanism for insulator-mediated barrier function and

enhancer blocking activity.

CTCF: inhibitor and facilitator of enhancer
function
Enhancer blocking activity of an insulator depends on its

arrangement, that is, it has to be situated between the

enhancer and promoter. This fact alone implies that the

enhancer blocking activity is achieved by interfering with

the chromatin looping required for enhancer/promoter

contact. Detailed analysis of three-dimensional looping

and the role played by the insulator protein CTCF

revealed that CTCF not only possesses interference

(enhancer blocking) activity, but also additionally med-

iates chromatin contacts or loops required for enhancer

function. Examples for such bivalent consequences of

loop formation are discussed below.

Bioinformatics evaluation of genome-wide chromatin in-

teraction data led to the construction of a genome-wide

interaction map of regulatory elements, which indicated

that enhancer–promoter interactions are highly cell-type

specific. Key interacting components are CTCF and

cohesin [14]. This is exemplified by the MHC-II locus,

which is active in B cells and bound by CTCF at 15 sites.

In plasmablasts, this locus is inactive and only one third

of the CTCF sites are bound. This correlates with the

finding that CTCF is required for the cell type specific

three-dimensional architecture of the locus and for maxi-

mal MHC-II gene expression in B cells [15�].

Another example is where CTCF/cohesin organizes a

loop pattern that includes the promoter of the PTGS2

gene such that the PTGS2 gene is activated. In cancer

cells the CpG island at the PTGS2 promoter is methyl-

ated and the gene is turned off. This silencing mechanism

is in part caused by the methylation-induced loss of

CTCF binding, which results in a change in chromatin

looping and abrogation of gene activity [16].

Regulation of dCTCF binding in Drosophila development

is seen at the homeotic gene Ultrabithorax (Ubx), which is

activated by Ubx enhancer elements in the third thoracic

leg imaginal disc. Here, a dCTCF site at the enhancer

generates a loop with the gene promoter. In inactive tissues
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Table 1

Insulator components with conserved features in vertebrates and Drosophila.

Factor Organism Description References

CTCF H. sap. Enhancer blocking activity of the chicken beta-globin insulator [10]

dCTCF D. mel. Enhancer blocking of Fab-8 insulator [13]

GAGA D. mel. Enhancer blocking of the eve promoter [77]

Th-POK M. mus. Binding to enhancer-blocking elements in murine Hox clusters [78]

Cohesin H. sap. Cohesin is required for enhancer blocking of the H19 ICR [79]

D. mel. Enriched at TAD borders [54��]

TFIIIC H. sap. Loss of binding to tDNA promoters reduces their enhancer blocking activity [80]

D. mel. Binding to borders of topological domains (ChIP-seq) [54��]

Condensin M. mus. Binding correlates with enhancer blocking capacity of TAD borders [54��]

D. mel. Enriched at TAD borders [54��]

Rm62 D. mel. Interacts with CP190 and mutations affect gypsy-mediated insulation in ct and y2-loci [81]

p68 H. sap. Along with SRA required for CTCF to perform proper insulation [82]

PARP1 D. mel. Modifies insulator functions [83]

H. sap. Prevents DNA methylation of CTCF target sites. Controls circadian transcription [84,85��]

dMes-4 D. mel. BEAF-32 co-factor, involved in gene regulation [86]

PRDM5 M. mus. Interacts and overlaps with CTCF and Cohesin; recruits G9a (HMT) [87]

Nurf-301 D. mel. Regulates Fab-8 enhancer blocking activity [72�]

Bptf H. sap. Interacts with CTCF; regulates nucleosomal arrays around CTS [74]

TGF-b signal-ling D. mel. Genome-wide overlap with and dependency, to some extend, on dCTCF [88]

H. sap. CTCF physically interacts with Smad3 and recruits Smad to H19 ICR [89]

CP190 D. mel. enhancer-blocking activity, mediates long-range interactions [25,37]

Kaiso H. sap. Similar to BTB domain of CP190; mediates enhancer-blocking activity:

physically interacts with CTCF

[90]
this dCTCF site is not occupied and enhancer/promoter

interaction is lost [17], clearly demonstrating that this

dCTCF site is a facilitator of enhancer action.

Not only can enhancer/promoter interactions be facilitated

by CTCF/cohesin, but also other 3D-interactions may

depend on CTCF sites. For example, CTCF-dependent

enhancer/enhancer clustering in the nucleus was observed

in thymocytes. Targeted 3C analysis demonstrated that

interactions between the Cd3 super-enhancers as well

as with other enhancers were significantly weakened in

cohesin-deficient thymocytes [18�]. Furthermore, CTCF/

cohesin dependent inter-chromosomal contacts control

enhancer inhibition in case of the Sox-2 and Sox-17 genes

[19��]. Similarly, enhancer inhibition and facilitation was

observed in erythroid cells, where together with other

factors, CTCF bound to several sites mediates an intra-

chromosomal interaction on chromosome 1 between the

TAL1 promoter and its downstream enhancer, allowing for

regulated TAL1-expression. However, in T-cell acute lym-

phoblastic leukemia, these interactions are altered, result-

ing in aberrant expression of the TAL1 oncogene [20��].

Barrier function and topologically associated
domains
The identification of chromatin domains with either

active histone marks or silencing modifications led to
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the concept of barriers that prevent one domain interfer-

ing with the neighbouring one. Loss of barrier function

has often been related to inactive marks spreading into

the active domain [21–29], although activation of inactive

domains is possible as well (see below). Initial analyses

revealed CTCF binding and loop formation at barrier

sites flanked by opposite chromatin states [30–32]. In

Drosophila, depletion of dCTCF results in a small change

in H3K27me3 spreading [33], when testing genome-wide

effects. Additional architectural proteins are also present

at chromatin barriers and may compensate for the loss of

CTCF-dependent barrier functions (see below). There-

fore, only a few barrier sites, which are primarily depen-

dent on CTCF, showed an expansion of the H3K27me3

mark into the flanking region [34–38]. As discussed be-

low, the role, played by insulators and CTCF in barrier

function, is further supported by the analysis of homeotic

genes, and illustrated by the concept of topologically

associated domains [39] (TADs) (Figure 1).

Homeotic genes are expressed during development in a

cell type, and stage specific manner. The collinear geno-

mic arrangement and expression of the gene clusters

specify the segmental identities along the body axis of

Drosophila and mammals. Thus, in a given cell type or

specific developmental stage one group of Hox genes may

be turned off by Polycomb function, resulting in

H3K27me3 modification of the respective gene locus.
www.sciencedirect.com
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Figure 1
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Insulators, chromatin domains and topologically associated domains (TADs). Interaction matrix representing a virtual Hi-C experiment (top). The

grey scale above indicates interaction frequencies. Interactions occur predominantly within TADs (e.g. enhancer–promoter interactions), which are

often grouped in subdomains. Interactions between TAD boundaries are thought to depend on the binding of CTCF (shown as a schematic ChIP-

seq track in red) to its cognate DNA-binding motif (black arrows). CTCF sites not involved in binding to TAD boundaries are shown in pale red and

grey motifs, respectively. Motifs involved in long-range chromatin interactions show an inverted repeat orientation (see Figure 2). As not all TAD

boundaries are bound by CTCF it is likely that additional factors may be involved in their function (indicated by question mark). TADs are often co-

incident with chromatin domains represented by a schematic ChIP-seq track for an active (H3K36me3; green) and a repressive (H3K27me3; blue)

histone modification. Active TADs are gene-rich (black bars for active genes) in contrast to gene-poor repressed domains (grey bars).
In both mammals and Drosophila, Hox gene clusters are

marked by CTCF/dCTCF binding at the borders between

individual regulatory elements of the Hox genes [12,40–42].

In Drosophila, developmental expression is specific for

each parasegment. Chromatin purified from single para-

segments revealed a ‘step-wise’ pattern of acetylated

H3K27 (active gene domain) or of H3K27me3 (inactive

gene domain) with sharp, dCTCF-bound boundaries at

the bithorax complex (BX-C) regulatory domains [43��].
This suggests that functional boundaries associated with

dCTCF binding restrict H3K27me3 or H3K27 acetylation

to one domain, preventing spreading into the neighbouring

domain.

A similar situation is found with the mouse and human

HoxA genes. Kinetic analyses of myelomonocytes differ-

entiating into monocytes/macrophages revealed a dynam-

ic change in HoxA cluster topology [44]. HoxA expression

in ES cells is silenced by H3K27me3, whereas differen-

tiation into neuronal cells is marked by activation of the
www.sciencedirect.com 
rostral group of the HoxA cluster, while the caudal group

of genes remain silenced [45,46]. Again, the pattern of

gene activity is associated with a ‘step-wise’ pattern

of H3K27 modification [47��] with H3K27me3 enriched

at silent genes. To test the requirement for CTCF at

functional boundaries, the CRISPR/Cas technique was

used to delete a CTCF binding site separating the active

gene groups from the repressed genes within the HoxA
cluster. CTCF loss at these sites resulted in spreading

of H3K4 methylation, an active chromatin modification,

into the repressed region, thereby activating a caudal Hox
gene [46,47��]. This clearly shows that CTCF acts as

a barrier, in this case for active marks spreading into a

silenced region.

Analysis of Hox genes suggests that barrier function is

linked with TAD organization (Figure 1). In wildtype,

Hox gene expression and H3K27 modification correlate

with two TADs in motor neurons. Deletion of the CTCF

site at the boundary not only removes the barrier, but also
Current Opinion in Genetics & Development 2016, 37:17–26
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shifts the TAD boundary further into the caudal TAD, up

to the next CTCF site [47��]. Upon removing this site as

well, the barrier and TAD boundary shifted even further

into the caudal gene region. Thus, both barrier function

and TAD boundary function are controlled by CTCF and

are probably two features of the same phenomenon.

How do these structural units relate to genomic functions

such as control of transcription? In one study, ChIA-PET

was used to generate a map of enhancer–promoter inter-

actions in ES cells. Genes controlled by super-enhancers

were found to reside within a super-enhancer domain

structure with the flanking, protein-bound CTCF/cohesin

sites forming a loop. Consequently, these loops generate

insulated neighbourhoods that are preserved in multiple

cell types. Similarly, Polycomb repressed genes are orga-

nized in insulated neighbourhoods flanked by CTCF/

cohesin, thereby forming a Polycomb domain [48��].

Another strategy to identify functional domains was to

insert regulatory sensor transposons into hundreds of sites

within the mouse genome. The enhancers identified in

this screen acted along broad regions that correlated

strongly with TADs [49��]. This suggests that three-

dimensional enhancer action is restricted to the genomic

region defined by TADs, and therefore the functional

domain structure concurs with the topological features

identified by 3D mapping.

Which features of TAD domain boundaries are required

for TAD formation? There is good evidence that interac-

tions within TADs contribute to boundary function [50].

In addition, TAD domain boundaries are strongly enriched

for CTCF/Cohesin binding. The importance of CTCF/

Cohesin for the structural and functional integrity of TADs

has been documented in several cases. The consequence

of CTCF loss for the 3D structure of chromatin was

tested by depleting CTCF [51,52�]. Some changes were

observed, such as a mild reduction in intra-domain inter-

actions as well as a gain in inter-domain interactions.

Nevertheless, the overall organization and long distance

interaction remained. This, and the fact that many more

CTCF sites exist that are not located at TAD boundaries

(Figure 1), argues for additional factors involved in the

3D landscape of chromatin. In fact, besides CTCF/

dCTCF, many architectural factors have been found at

TAD borders. These factors are cohesin components

SMC3 and RAD21, TFIIIC subunits, condensin subunits

and PRDM5, a SET domain protein [53��,54��]. Further-

more, there is evidence that CTCF is an RNA binding

protein and that RNA is involved in CTCF recruitment

and long-range interaction [55]. Another Drosophila IBP,

Su(Hw) has been shown to interact with RNA as well [56].

The functional importance of the TAD organization

becomes evident when TAD borders are deleted. Human

families with rare limb malformations show rearrangements
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in the extended WNT6/IHH/EPHA4/PAX3 region. Com-

parable rearrangements were generated in mice using the

CRISPR/Cas technique [57��]. These mutations resulted

in disease-relevant changes in interactions between pro-

moters and non-coding DNA as well in aberrant gene

expression. Furthermore, these mice developed digital

malformations similar to phenotypes observed in patients.

These changes in chromatin interaction and function only

occurred if the rearrangement disrupted a CTCF-associat-

ed TAD boundary [57��].

The relevance of TAD organization is further underscored

by its evolutionary conservation. A group of homeobox

genes, called the Six cluster, is highly conserved from sea

urchins and zebrafish to mice and humans. Similarly, the

TAD organization is conserved with two largely indepen-

dent regulatory landscapes contained within two adjacent

TADs [58�]. Interestingly, CTCF binding sites at the TAD

borders are found in opposite orientations, also a highly

conserved feature. CTCF sites divergent between species

correlate with divergence of an internal domain structure.

Comparing genomes and domain structures of mouse

and dog revealed insertions, inversions and duplications.

Interestingly, in each case the rearrangement occurred at

the border between two TADs [59��].

In Drosophila, functional tests revealed that inverted

insulators form loops more efficiently than insulators in

identical orientation [60]. Similarly, in vertebrates it

became obvious that the direction of CTCF binding sites

plays a major role in determining which combinations of

CTCF binding sites are compatible for interacting and

subsequently generating loops. First, the orientation of

CTCF binding motifs is strongly conserved across evo-

lution [59��]. Second, genome-wide analysis revealed that

72% or 48% of the mouse or human TAD borders,

respectively, contain a pair of convergent CTCF sites

[53��,58�]. This suggests a functional role of pairing

between CTCF bound TAD borders, and that the selec-

tion of sites involved in pairing may be driven by the

orientation of the CTCF binding sequences. Indeed,

CRISPR/Cas mediated inversion of one of the CTCF

binding sites in the Pcdh and beta-globin gene clusters

induced directional switching of genome topology or

partial merging of neighbouring chromatin domains

[61��]. But how can the direction of CTCF binding motifs

influence pairing between insulators often separated by

several hundred kilobases of DNA? A hypothetical model

includes the biophysical ability of CTCF to bend DNA

by 908 [62]. This causes a structure with an orientation

that may be more accessible to pairing with another

CTCF molecule bound to an inverted binding site

(Figure 2). Furthermore, such a three-dimensional ar-

rangement may have sterical consequences for nucleo-

some formation and for binding of cohesin and additional

factors. Physical modelling suggested a loop extrusion

model explaining why loops tend not to overlap and why
www.sciencedirect.com
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Figure 2
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The structure and orientation of the CTCF/DNA complex may guide

pairing of TAD boundaries. A hypothetical model includes the

biophysical ability of CTCF to bend DNA by 908 [62]. When DNA

binding motifs are convergent, this may facilitate homodimeric CTCF

interaction and formation of the bent conformation at the bottom of

the loop. The DNA bend is found at the DNA spacer between zinc

finger groups 1 to 7 and 8 to 11, which has been identified by DNase I

hypersensitivity [91]. Physical modelling supports a loop extrusion

model in the context of paired CTCF binding sites in convergent

orientation [63��].
the CTCF-binding motifs at pairs of loop anchors lie in

the convergent orientation [63��]. This model was nicely

supported by genome editing altering CTCF-binding

sites. In every case the convergent rule correctly pre-

dicted loop formation [63��].

The specific role of Drosophila CP190
As described above, the general functions of insulator

factors are highly conserved between vertebrates and

Drosophila (Table 1). Nevertheless, an insect specific

factor crucial for insulator function is the centrosomal

protein 190 (CP190). Although identified in the context of

centrosomes [64], a functional role was found in insulation

mediated by Su(Hw) [65]. Subsequently, other IBPs have

been identified that also bind CP190, for example BEAF-

32, GAF, Zw5 and dCTCF, which frequently co-localize

with CP190 throughout the Drosophila genome [33].

From these data it became evident that a class of potential
www.sciencedirect.com 
insulator sites was bound by CP190 in the absence of any

known DNA binding factors.

Recent searches for additional, DNA binding and CP190

interacting factors identified insulator binding factors

1 and 2 (Ibf1, Ibf2) [66], a zinc finger protein interacting

with CP190 (ZIPIC) and Pita [67�]. All four factors

mediate enhancer blocking of transgenes in Drosophila.

Genome-wide binding was frequently found to be clus-

tered with other IBPs and with TAD borders [54��]. In

addition to this correlation, many IBP binding sites are

found within TADs and many TAD boundaries are not

associated with IBPs (Figure 3). Mapping of the CP190

protein revealed separate interaction domains with Pita

and ZIPIC [67�]. This suggests that CP190 has a bridging

function, simultaneously contacting several proteins.

Such a feature was implicated when deletion of the

CP190 interaction domain of BEAF-32 [68�] resulted

in BEAF-32 located at distant sites failing to interact

with GAF or dCTCF bound promoters. The biophysical

capacity of CP190/BEAF-32 to mediate long-range inter-

actions in vitro further supports the bridging function of

CP190 [69].

Assuming that CP190 is a bridging factor and that IBPs

are frequently clustered [33,54��,67�,70], one can envision

a concept of several IBPs targeting CP190 more efficient-

ly (Figure 3). On the other hand, this multitude of

clustered and CP190 interacting factors causes some kind

of redundancy. This is evident from a dCTCF mutant

lacking the CP190 interaction domain, which is still able

to function similarly to wildtype dCTCF [71]. Based on

synergistic recruitment one would expect CP190 binding

to scale with IBP binding, which indeed could be shown

[67�]. Furthermore, insulator function and topological

domain border strength both correlate with IBP protein

occupancy [54��].

The search for additional architectural proteins involved

in insulator function revealed many more factors contrib-

uting to insulator strength, such as TFIIIC, Rad21 (cohe-

sin), Chromator, DREF, L(3)mbt and condensin factors

CAP-H2 and Barren [54��]. Occupancy and clustering of

these factors to individual sites correlates with enhancer-

blocking activity and TAD border strength. Thus, more

architectural factors binding to insulators increase the

insulator function. When re-analysing binding and Hi-

C data from mouse and human ESCs and IMR90 fibro-

blasts, a similar conclusion could be drawn: mammalian

TAD borders are enriched for the architectural factors

CTCF, TFIIIC, cohesin and condensin components and

binding correlates with topological structure and regula-

tory potential [54��]. Thus, a highly conserved molecular

mechanism for TAD boundary function and insulation

(Table 1) arises from the binding strength of factors

connected by protein/protein interactions mediated by

CP190, cohesin and condensin and possibly many others.
Current Opinion in Genetics & Development 2016, 37:17–26
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Figure 3
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Drosophila CP190 recruitment and strength of TAD boundaries/insulators correlate with combinatorial binding of architectural proteins. (a) The

interaction matrix represents TADs. Boundaries between TADs are often marked by CP190 binding (schematic ChIP-seq track, blue). CP190 is

recruited to chromatin by a wide variety of insulator binding factors (IBPs, as exemplified by CTCF, BEAF32 and Pita in schematic ChIP-seq

tracks). Frequently, different insulator binding factors cluster together, suggesting a cooperative recruitment mode for targeting CP190 to

chromatin. Combinatorial recruitment of CP190 to TAD boundaries may be functionally important since high occupancy of IBPs and other

architectural proteins such as cohesin, condensin and TFIIIC predict the strength of insulator function as well as TAD borders [54��]. It should be

noted that not all TAD boundaries are bound by known IBPs (?) and that many IBP binding sites are found within TADs. (b) The physical DNA

string model summarizes the contact and binding data illustrated in (a).
In addition to the architectural and looping functions, an

enzymatic activity in nucleosomal depletion was postu-

lated due to the finding that dCTCF/CP190 binding sites

show reduced nucleosomal occupancy, whereas dCTCF

sites devoid or depleted of CP190 are loaded with nucleo-

somes [37]. A functional siRNA screen identified NURF

and dREAM complexes binding to CP190 and being

required for enhancer blocking [72�,73]. Probably, the

nucleosomal remodelling activity of ISWI, a component

of NURF, causes nucleosomal depletion at CP190/

dCTCF sites. Interestingly, a NURF and CTCF connec-

tion has also been found in vertebrates (Table 1) [74].

Testing chromatin conformation at a synthetic cluster

of hundreds of binding sites for a LacI-CP190 fusion

revealed a general opening and expansion of chromatin
Current Opinion in Genetics & Development 2016, 37:17–26 
in Drosophila cells [75]. A similar function was mediated

by vertebrate CTCF in vertebrate cells [36,76]. Analysis

of chromatin before and after CTCF recruitment

revealed active removal of the H3K27me3 mark, likely

by incorporating the H3.3 variant [36]. This variant is

often associated with unstable nucleosomes and may

explain that insulators are depleted of nucleosomes,

and that flanking nucleosomes are free of the repressive

histone mark H3K27me3.

When comparing vertebrate and Drosophila in respect to

chromatin domains and insulation, many observations are

comparable, as discussed above. Nevertheless, there are

many more IBPs in Drosophila, not found in vertebrates

as is CP190. Potentially, the demand for efficient, and

maybe locus-specific insulation may be much higher in
www.sciencedirect.com
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case of the very compact Drosophila genome. This diver-

sity of IBPs seems to be functionally merged by CP190.

Conclusions and perspectives
Recent advances in determining the three-dimensional

folding and interaction of chromatin at high resolution

have highlighted the impact of higher-order chromatin

structure on genome function. This is supported by the

emerging concept of topologically associated domains

separating the genome into conserved chromosomal

neighbourhoods encompassing blocks of similarly regu-

lated genomic regions. Architectural proteins, including

CTCF, are the determinants for the strength of TAD

formation and insulator function. The selection of inter-

acting regions, in the case of CTCF, is dictated by the

binding site orientation. It is obvious that CTCF and its

orientation only partly account for the determinants

selecting and mediating proper interactions. About

30 000 sites in the vertebrate genome are bound by

CTCF, but only a fraction is found at TAD borders.

What are the factors or combinations of factors determin-

ing the specificity of interacting elements? Furthermore,

not all TAD borders have CTCF sites. Which factors or

features are mediating the boundary function in these

cases?

Despite the fact that many more insulator proteins are

known in Drosophila than in vertebrates, the general

features and many of the components are highly con-

served (Table 1). Does this mean there are many more

vertebrate factors involved in insulation that are yet to be

found in vertebrates? And if so, will they help in solving

the specificity problem?

In addition to long-range interaction and looping func-

tions, characteristic chromatin modifications are found at

insulators and are required for insulator activity. Further-

more, RNA molecules are involved in CTCF function. It

remains to be seen whether these activities are funda-

mental to insulator function, or whether they support

efficient binding of the architectural proteins, thereby

maintaining long-range interactions.
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24 Genome architecture and expression
Cell fate switching from pluripotent ES cells to mesendoderm determina-
tion involves OCT4 binding to cohesin. This changes the higher-order
chromatin structure at the Sox-2 and Sox-17 genes. These alterations
involve intra-chromosomal and inter-chromosomal contacts, resulting in
active enhancer/promoter contacts.

20.
��

Patel B, Kang Y, Cui K, Litt M, Riberio MSJ, Deng C, Salz T,
Casada S, Fu X, Qiu Y et al.: Aberrant TAL1 activation is
mediated by an interchromosomal interaction in human T-cell
acute lymphoblastic leukemia. Leukemia 2014, 28:349-361.

In erythroid cells, CTCF mediates an intra-chromosomal interaction
between the TAL1 promoter and its downstream enhancer. Three-dimen-
sional chromatin interactions are changed in T-cell acute lymphoblastic
leukemia (T-ALL), such that the TAL1 oncogene is activated.

21. Barkess G, West AG: Chromatin insulator elements:
establishing barriers to set heterochromatin boundaries.
Epigenomics 2012, 4:67-80.

22. Gaszner M, Felsenfeld G: Insulators: exploiting transcriptional
and epigenetic mechanisms. Nat Rev Genet 2006, 7:703-713.

23. Herold M, Bartkuhn M, Renkawitz R: CTCF: insights into
insulator function during development. Development 2012,
139:1045-1057.

24. Matzat LH, Lei EP: Surviving an identity crisis: a revised view of
chromatin insulators in the genomics era. Biochim Biophys
Acta-Gene Regul Mech 2014, 1839:203-214.

25. Negre N, Brown CD, Ma LJ, Bristow CA, Miller SW, Wagner U,
Kheradpour P, Eaton ML, Loriaux P, Sealfon R et al.: A cis-
regulatory map of the Drosophila genome. Nature 2011,
471:527-531.

26. Ong CT, Corces VG: CTCF: an architectural protein bridging
genome topology and function. Nat Rev Genet 2014,
15:234-246.

27. Vogelmann J, Valeri A, Guillou E, Cuvier O, Nollmann M: Roles of
chromatin insulator proteins in higher-order chromatin
organization and transcription regulation. Nucleus-Austin
2011, 2:358-369.

28. Wallace JA, Felsenfeld G: We gather together: insulators and
genome organization. Curr Opin Genet Dev 2007, 17:400-407.

29. Yang J, Corces VG: Insulators, long-range interactions, and
genome function. Curr Opin Genet Dev 2012, 22:86-92.

30. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui KR, Zhao KJ:
Global analysis of the insulator binding protein CTCF in
chromatin barrier regions reveals demarcation of active and
repressive domains. Genome Res 2009, 19:24-32.

31. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS,
Ren B: Topological domains in mammalian genomes
identified by analysis of chromatin interactions. Nature 2012,
485:376-380.

32. Handoko L, Xu H, Li GL, Ngan CY, Chew E, Schnapp M, Lee CWH,
Ye CP, Ping JLH, Mulawadi F et al.: CTCF-mediated functional
chromatin interactome in pluripotent cells. Nat Genet 2011, 43
630-U198.

33. Schwartz YB, Linder-Basso D, Kharchenko PV, Tolstorukov MY,
Kim M, Li HB, Gorchakov AA, Minoda A, Shanower G,
Alekseyenko AA et al.: Nature and function of insulator protein
binding sites in the Drosophila genome. Genome Res 2012,
22:2188-2198.

34. Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L,
Velecela V, Martinez-Estrada OM, Wiltshire JH, Roberts SG et al.:
A wt1-controlled chromatin switching mechanism underpins
tissue-specific wnt4 activation and repression. Dev Cell 2011,
21:559-574.

35. Soto-Reyes E, Recillas-Targa F: Epigenetic regulation of the
human p53 gene promoter by the CTCF transcription factor
in transformed cell lines. Oncogene 2010, 29:2217-2227.

36. Weth O, Paprotka C, Gunther K, Schulte A, Baierl M, Leers J,
Galjart N, Renkawitz R: CTCF induces histone variant
incorporation, erases the H3K27me3 histone mark and
opens chromatin. Nucleic Acids Res 2014, 42:11941-11951.
Current Opinion in Genetics & Development 2016, 37:17–26 
37. Maksimenko O, Kyrchanova O, Bonchuk A, Stakhov V,
Parshikov A, Georgiev P: Highly conserved ENY2/Sus1 protein
binds to Drosophila CTCF and is required for barrier activity.
Epigenetics 2014, 9:1261-1270.

38. Bartkuhn M, Straub T, Herold M, Herrmann M, Rathke C,
Saumweber H, Gilfillan GD, Becker PB, Renkawitz R: Active
promoters and insulators are marked by the centrosomal
protein 190. Embo J 2009, 28:877-888.

39. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M,
Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO
et al.: Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science 2009,
326:289-293.

40. Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T: The
chromatin insulator CTCF and the emergence of metazoan
diversity. Proc Natl Acad Sci U S A 2012, 109:17507-17512.

41. Holohan EE, Kwong C, Adryan B, Bartkuhn M, Herold M,
Renkawitz R, Russell S, White R: CTCF genomic binding sites
in Drosophila and the organisation of the bithorax complex.
PLoS Genet 2007, 3:1211-1222.

42. Soshnikova N, Montavon T, Leleu M, Galjart N, Duboule D:
Functional analysis of CTCF during mammalian limb
development. Dev Cell 2010, 19:819-830.

43.
��

Bowman SK, Deaton AM, Domingues H, Wang PI, Sadreyev RI,
Kingston RE, Bender W: H3K27 modifications define segmental
regulatory domains in the Drosophila bithorax complex.
Elife 2014, 3:e02833.

The Drosophila bithorax-complex contains homeotic genes with their
segment-specific regulatory elements collinearly arranged with the order
of parasegments along the body axis of the fly. CTCF bound insulators
separate the segment-specific control regions. The authors isolated
chromatin from individual parasegments and found that the repressive
chromatin mark H3K27me3 precisely follows a sharp ‘step-wise’ pattern
with CTCF marking the steps.

44. Rousseau M, Crutchley JL, Miura H, Suderman M, Blanchette M,
Dostie J: Hox in motion: tracking HoxA cluster conformation
during differentiation. Nucleic Acids Res 2014, 42:1524-1540.

45. Kim YJ, Cecchini KR, Kim TH: Conserved, developmentally
regulated mechanism couples chromosomal looping and
heterochromatin barrier activity at the homeobox gene A
locus. Proc Natl Acad Sci U S A 2011, 108:7391-7396.

46. Xu M, Zhao GN, Lv X, Liu G, Wang LY, Hao DL, Wang J, Liu DP,
Liang CC: CTCF controls HOXA cluster silencing and mediates
PRC2-repressive higher-order chromatin structure in NT2/D1
cells. Mol Cell Biol 2014, 34:3867-3879.

47.
��

Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO,
Reinberg D: Transcription. CTCF establishes discrete
functional chromatin domains at the Hox clusters during
differentiation. Science 2015, 347:1017-1021.

The authors studied the HoxA gene cluster during ES cell differentiation
into motor neurons. CRISPR/Cas mediated deletion of CTCF binding
sites resulted in the expansion of active chromatin into repressive
domains. Spreading of active chromatin was confined to the region up
to the next CTCF site.

48.
��

Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN,
Weintraub AS, Schuijers J, Lee TI, Zhao K et al.: Control of cell
identity genes occurs in insulated neighborhoods in
mammalian chromosomes. Cell 2014, 159:374-387.

The authors used the cohesin ChIA-PET technique, which combines
immunoprecipitation of chromatin bound cohesin with chromosome
conformation analysis. Super-enhancer-driven cell identity genes and
Polycomb-bound lineage-specifying genes were found to occur in insu-
lated chromosome loops. These were generally flanked by interacting
CTCF/cohesin sites.

49.
��

Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W,
Ettwiller L, Spitz F: Functional and topological characteristics
of mammalian regulatory domains. Genome Res 2014,
24:390-400.

The authors inserted and mapped more than 1000 integration sites of a
regulatory sensor transposon within the mouse genome. Transposon
activation identified enhancers acting along broad regions, which corre-
lated strongly with TADs. This suggests that TADs confine regulatory
activities to regulatory domains.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0555
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0555
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0555
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0555
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0560
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0560
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0560
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0565
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0565
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0570
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0570
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0570
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0575
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0575
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0575
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0580
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0580
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0580
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0580
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0585
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0585
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0585
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0590
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0590
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0590
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0590
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0595
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0595
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0600
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0600
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0605
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0605
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0605
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0605
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0610
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0610
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0610
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0610
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0615
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0615
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0615
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0615
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0620
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0620
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0620
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0620
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0620
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0625
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0625
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0625
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0625
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0625
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0630
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0630
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0630
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0635
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0635
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0635
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0635
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0640
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0640
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0640
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0640
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0645
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0645
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0645
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0645
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0650
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0650
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0650
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0650
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0650
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0655
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0655
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0655
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0660
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0660
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0660
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0660
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0665
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0665
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0665
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0670
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0670
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0670
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0670
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0675
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0675
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0675
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0680
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0680
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0680
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0680
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0685
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0685
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0685
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0685
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0690
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0690
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0690
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0690
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0695
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0695
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0695
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0695
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0700
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0700
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0700
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0700


Insulators and domains of gene expression Ali, Renkawitz and Bartkuhn 25
50. Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, Dekker J, Tiana G,
Heard E: Predictive polymer modeling reveals coupled
fluctuations in chromosome conformation and transcription.
Cell 2014, 157:950-963.

51. Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-
Simmons E, Lenhard B, Giorgetti L, Heard E, Fisher AG et al.:
Cohesin-based chromatin interactions enable regulated gene
expression within preexisting architectural compartments.
Genome Res 2013, 23:2066-2077.

52.
�

Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P,
Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA,
van IJcken WFJ et al.: Cohesin and CTCF differentially affect
chromatin architecture and gene expression in human cells.
Proc Natl Acad Sci U S A 2014, 111:996-1001.

Depletion of cohesin or CTCF resulted in a general loss of local chromatin
interactions. Depletion of CTCF not only reduced intra-domain interac-
tions but also increased inter-domain interactions, supporting the role of
CTCF at TAD borders.

53.
��

Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID,
Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al.: A
3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 2014, 159:1665-1680.

The authors established an in situ Hi-C method where DNA–DNA proxi-
mity ligation is performed in intact nuclei. This allowed them to map the
genomic architecture at 1 kb resolution. Loop anchors typically occur at
domain boundaries and bind CTCF. These CTCF sites occur predomi-
nantly (>90%) in a convergent orientation.

54.
��

Van Bortle K, Nichols MH, Li L, Ong CT, Takenaka N, Qin ZS,
Corces VG: Insulator function and topological domain border
strength scale with architectural protein occupancy. Genome
Biol 2014, 15:R82.

Mapping genome-wide binding for several Drosophila architectural pro-
teins identified an extensive pattern of colocalization. Architectural pro-
teins in Drosophila as well as in mouse and human stem cells established
dense clusters at the borders of topological domains. Insulator function
and topological domain border strength correlated with IBP protein
occupancy.

55. Kung JT, Kesner B, An JY, Ahn JY, Cifuentes-Rojas C,
Colognori D, Jeon Y, Szanto A, del Rosario BC, Pinter SF et al.:
Locus-specific targeting to the X chromosome revealed by the
RNA interactome of CTCF. Mol Cell 2015, 57:361-375.

56. Matzat LH, Dale RK, Lei EP: Messenger RNA is a functional
component of a chromatin insulator complex. EMBO Rep 2013,
14:916-922.

57.
��

Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E,
Hom D, Kayserili H, Opitz JM, Laxova R et al.: Disruptions of
topological chromatin domains cause pathogenic rewiring of
gene–enhancer interactions. Cell 2015, 161:1012-1025.

Several unrelated families with syndactyly and brachydactyly were found
to possess genomic disruptions of the TAD structure at the EPHA4 locus.
Using CRISPR/Cas genome editing, mice were generated with corre-
sponding rearrangements. In both mouse limb tissue and patient-derived
fibroblasts, disease-relevant structural changes cause ectopic interac-
tions between promoters and non-coding DNA. This rewiring only
occurred if the variant disrupted a CTCF-associated boundary domain.

58.
�

Gomez-Marin C, Tena JJ, Acemel RD, Lopez-Mayorga M,
Naranjo S, de la Calle-Mustienes E, Maeso I, Beccari L, Aneas I,
Vielmas E et al.: Evolutionary comparison reveals that diverging
CTCF sites are signatures of ancestral topological associating
domains borders. Proc Natl Acad Sci U S A 2015, 112:7542-7547.

Chromosome conformation analysis identified two largely independent
regulatory landscapes at the conserved homeotic Six genes, which are
contained within two adjacent TADs. Evolutionary comparison of these
TAD borders revealed the presence of CTCF sites with convergent
orientations in all studied deuterostomes.

59.
��

Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT,
Tanay A, Hadjur S: Comparative Hi-C reveals that CTCF
underlies evolution of chromosomal domain architecture.
Cell Rep 2015, 10:1297-1309.

Comparative Hi-C analysis of liver cells from mouse, macaque, rabbit and
dog showed a robust conservation within syntenic regions. Similarly, CTCF/
cohesin binding sites are conserved and enriched at TAD borders in a
convergent orientation. Genomic reorganization involved intact modules.

60. Kyrchanova O, Chetverina D, Maksimenko O, Kullyev A,
Georgiev P: Orientation-dependent interaction between
www.sciencedirect.com 
Drosophila insulators is a property of this class of regulatory
elements. Nucleic Acids Res 2008, 36:7019-7028.

61.
��

Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H,
Zhai Y, Tang Y et al.: CRISPR inversion of CTCF sites alters
genome topology and enhancer/promoter function. Cell 2015,
162:900-910.

The authors used the CRISPR technique to invert regulatory elements
with CTCF binding sites. This resulted in directional changes of 3D-
topology at Pcdh and beta-globin genes. Together with the finding that
the vast majority of genome-wide chromatin loops occur between con-
vergent CTCF binding sites, these results suggest that TAD formation can
be predicted and manipulated.

62. Arnold R, Burcin M, Kaiser B, Muller M, Renkawitz R: DNA
bending by the silencer protein NeP1 is modulated by TR
and RXR. Nucleic Acids Res 1996, 24:2640-2647.

63.
��

Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH,
Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J et al.:
Chromatin extrusion explains key features of loop and domain
formation in wild-type and engineered genomes. Proc Natl
Acad Sci U S A 2015.

In this publication a physical simulation is presented, using the data from
high-resolution spatial proximity maps. This model is consistent with the
formation of loops by a process of extrusion and explains why the CTCF-
binding motifs at pairs of loop anchors lie in the convergent orientation.
The authors tested their model by using the CRISPR/Cas technology to
delete or invert specific CTCF motifs. In every of the 13 mutations
generated, the convergent rule was in agreement with loop formation.

64. Whitfield WG, Millar SE, Saumweber H, Frasch M, Glover DM:
Cloning of a gene encoding an antigen associated with the
centrosome in Drosophila. J Cell Sci 1988, 89(Pt 4):467-480.

65. Pai CY, Lei EP, Ghosh D, Corces VG: The centrosomal protein
CP190 is a component of the gypsy chromatin insulator. Mol
Cell 2004, 16:737-748.

66. Cuartero S, Fresan U, Reina O, Planet E, Espinas ML: Ibf1 and Ibf2
are novel CP190-interacting proteins required for insulator
function. EMBO J 2014, 33:637-647.

67.
�

Maksimenko O, Bartkuhn M, Stakhov V, Herold M, Zolotarev N,
Jox T, Buxa MK, Kirsch R, Bonchuk A, Fedotova A et al.: Two new
insulator proteins, Pita and ZIPIC, target CP190 to chromatin.
Genome Res 2015, 25:89-99.

The search for multi-zinc finger proteins involved in insulation identified
Pita and ZIPIC in Drosophila. Both bind to CP190 and mediate enhancer
blocking as well as protection from PRE-mediated silencing.

68.
�

Liang J, Lacroix L, Gamot A, Cuddapah S, Queille S, Lhoumaud P,
Lepetit P, Martin PG, Vogelmann J, Court F et al.: Chromatin
immunoprecipitation indirect peaks highlight long-range
interactions of insulator proteins and Pol II pausing.
Mol Cell 2014, 53:672-681.

Chromatin immunoprecitation of insulator-binding proteins (IBPs) not
only detected the interaction with their cognate binding site, but also
identified DNA binding sites of other factors contacting IBPs. These
indirect peaks are therefore long-range contact sites. The authors iden-
tified CP190 as mediating this interaction, which in many cases links IBPs
with RNAPII pausing sites.

69. Vogelmann J, Le Gall A, Dejardin S, Allemand F, Gamot A,
Labesse G, Cuvier O, Negre N, Cohen-Gonsaud M, Margeat E
et al.: Chromatin insulator factors involved in long-range DNA
interactions and their role in the folding of the Drosophila
genome. PLoS Genet 2014, 10:e1004544.

70. Van Bortle K, Ramos E, Takenaka N, Yang J, Wahi JE, Corces VG:
Drosophila CTCF tandemly aligns with other insulator proteins
at the borders of H3K27me3 domains. Genome Res 2012,
22:2176-2187.

71. Bonchuk A, Maksimenko O, Kyrchanova O, Ivlieva T, Mogila V,
Deshpande G, Wolle D, Schedl P, Georgiev P: Functional role of
dimerization and CP190 interacting domains of CTCF protein
in Drosophila melanogaster. BMC Biol 2015, 13:63.

72.
�

Bohla D, Herold M, Panzer I, Buxa MK, Ali T, Demmers J, Kruger M,
Scharfe M, Jarek M, Bartkuhn M et al.: A functional insulator
screen identifies NURF and dREAM components to be
required for enhancer-blocking. PLoS One 2014:9.

Reporter gene activity was determined to identify components required
for maximal enhancer blocking. RNAi depletion identified 78 genes
Current Opinion in Genetics & Development 2016, 37:17–26

http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0705
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0705
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0705
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0705
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0710
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0710
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0710
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0710
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0710
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0715
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0715
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0715
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0715
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0715
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0720
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0720
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0720
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0720
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0725
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0725
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0725
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0725
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0730
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0730
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0730
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0730
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0735
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0735
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0735
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0740
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0740
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0740
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0740
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0745
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0745
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0745
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0745
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0745
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0750
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0750
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0750
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0750
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0755
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0755
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0755
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0755
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0760
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0760
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0760
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0760
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0765
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0765
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0765
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0770
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0770
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0770
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0770
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0770
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0775
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0775
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0775
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0780
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0780
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0780
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0785
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0785
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0785
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0790
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0790
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0790
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0790
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0795
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0795
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0795
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0795
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0795
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0800
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0800
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0800
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0800
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0800
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0805
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0805
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0805
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0805
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0810
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0810
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0810
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0810
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0815
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0815
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0815
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0815


26 Genome architecture and expression
required for optimal Fab-8-mediated enhancer blocking. These included
all four components of the NURF complex as well as several subunits of
the dREAM complex.

73. Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A,
Ramaswamy S, Dyson NJ: dREAM co-operates with insulator-
binding proteins and regulates expression at divergently
paired genes. Nucleic Acids Res 2014, 42:8939-8953.

74. Qiu Z, Song C, Malakouti N, Murray D, Hariz A, Zimmerman M,
Gygax D, Alhazmi A, Landry JW: Functional interactions
between NURF and Ctcf regulate gene expression.
Mol Cell Biol 2015, 35:224-237.

75. Ahanger SH, Gunther K, Weth O, Bartkuhn M, Bhonde RR,
Shouche YS, Renkawitz R: Ectopically tethered CP190 induces
large-scale chromatin decondensation. Scient Rep 2014, 4.

76. Kitchen NS, Schoenherr CJ: Sumoylation modulates a domain
in CTCF that activates transcription and decondenses
chromatin. J Cell Biochem 2010, 111:665-675.

77. Ohtsuki S, Levine M: GAGA mediates the enhancer blocking
activity of the eve promoter in the Drosophila embryo.
Genes Dev 1998, 12:3325-3330.

78. Srivastava S, Puri D, Garapati HS, Dhawan J, Mishra RK:
Vertebrate GAGA factor associated insulator elements
demarcate homeotic genes in the HOX clusters.
Epigenet Chromatin 2013, 6:8.

79. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E,
Tsutsumi S, Nagae G, Ishihara K, Mishiro T et al.: Cohesin
mediates transcriptional insulation by CCCTC-binding factor.
Nature 2008, 451:796-801.

80. Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA,
Haussler D, Kamakaka RT: Human tRNA genes function
as chromatin insulators. EMBO J 2012, 31:330-350.

81. Lei EP, Corces VG: RNA interference machinery influences the
nuclear organization of a chromatin insulator. Nat Genet 2006,
38:936-941.

82. Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G:
Mediation of CTCF transcriptional insulation by DEAD-box
RNA-binding protein p68 and steroid receptor RNA activator
SRA. Genes Dev 2010, 24:2543-2555.

83. Ong CT, Van Bortle K, Ramos E, Corces VG: Poly(ADP-
ribosyl)ation regulates insulator function and intrachromosomal
interactions in Drosophila. Cell 2013, 155:148-159.
Current Opinion in Genetics & Development 2016, 37:17–26 
84. Zampieri M, Guastafierro T, Calabrese R, Ciccarone F,
Bacalini MG, Reale A, Perilli M, Passananti C, Caiafa P: ADP-
ribose polymers localized on Ctcf–Parp1–Dnmt1 complex
prevent methylation of Ctcf target sites. Biochem J 2012,
441:645-652.

85.
��

Zhao H, Sifakis EG, Sumida N, Millan-Arino L, Scholz BA,
Svensson JP, Chen X, Ronnegren AL, Mallet de Lima CD,
Varnoosfaderani FS et al.: PARP1- and CTCF-mediated
interactions between active and repressed chromatin
at the lamina promote oscillating transcription.
Mol Cell 2015, 59:984-997.

PARP1 and CTCF regulate the contacts between circadian genes and
nuclear lamina. Oscillating binding to the lamina promotes oscillating
transcriptional attenuation of clock-controlled genes.

86. Lhoumaud P, Hennion M, Gamot A, Cuddapah S, Queille S,
Liang J, Micas G, Morillon P, Urbach S, Bouchez O et al.:
Insulators recruit histone methyltransferase dMes4 to
regulate chromatin of flanking genes. EMBO J 2014,
33:1599-1613.

87. Galli GG, Carrara M, Francavilla C, de Lichtenberg KH, Olsen JV,
Calogero RA, Lund AH: Genomic and proteomic analyses of
Prdm5 reveal interactions with insulator binding proteins in
embryonic stem cells. Mol Cell Biol 2013, 33:4504-4516.

88. Van Bortle K, Peterson AJ, Takenaka N, O’Connor MB, Corces VG:
CTCF-dependent co-localization of canonical Smad signaling
factors at architectural protein binding sites in D.
melanogaster. Cell Cycle 2015, 14:2677-2687.

89. Bergstrom R, Savary K, Moren A, Guibert S, Heldin CH, Ohlsson R,
Moustakas A: Transforming growth factor beta promotes
complexes between Smad proteins and the CCCTC-binding
factor on the H19 imprinting control region chromatin.
J Biol Chem 2010, 285:19727-19737.

90. Defossez PA, Kelly KF, Filion GJ, Perez-Torrado R, Magdinier F,
Menoni H, Nordgaard CL, Daniel JM, Gilson E: The human
enhancer blocker CTC-binding factor interacts with
the transcription factor Kaiso. J Biol Chem 2005,
280:43017-43023.

91. Burcin M, Arnold R, Lutz M, Kaiser B, Runge D, Lottspeich F,
Filippova GN, Lobanenkov VV, Renkawitz R: Negative protein 1,
which is required for function of the chicken lysozyme gene
silencer in conjunction with hormone receptors, is identical to
the multivalent zinc finger repressor CTCF. Mol Cell Biol 1997,
17:1281-1288.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0820
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0820
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0820
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0820
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0825
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0825
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0825
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0825
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0830
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0830
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0830
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0835
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0835
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0835
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0840
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0840
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0840
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0845
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0845
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0845
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0845
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0850
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0850
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0850
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0850
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0855
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0855
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0855
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0860
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0860
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0860
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0865
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0865
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0865
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0865
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0870
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0870
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0870
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0875
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0875
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0875
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0875
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0875
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0880
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0880
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0880
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0880
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0880
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0880
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0885
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0885
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0885
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0885
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0885
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0890
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0890
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0890
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0890
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0895
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0895
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0895
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0895
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0900
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0900
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0900
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0900
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0900
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0905
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0905
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0905
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0905
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0905
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0910
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0910
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0910
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0910
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0910
http://refhub.elsevier.com/S0959-437X(15)00132-X/sbref0910

	Insulators and domains of gene expression
	Introduction
	CTCF: inhibitor and facilitator of enhancer function
	Barrier function and topologically associated domains
	The specific role of Drosophila CP190
	Conclusions and perspectives
	References and recommended reading
	Acknowledgements


